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Introduction 

The connections between Whitehead groups and uniformization properties were 

investigated by the third author in [9]. In particular it was essentially shown 

there that there is a non-free Whitehead (respectively, Rl-coseparable) group of 

cardinality R1 if and only if there is a ladder system on a stationary subset of 

wl which satisfies 2-uniformization (respectively, w-uniformization). (See also 

[5, §XII.3]; definitions are reviewed below.) These techniques allowed also the 

proof of various independence and consistency results about Whitehead groups, 

for example that it is consistent that there is a non-free Whitehead group of 

cardinality R1 but no non-free Rl-coseparable group (el. [5, XII.3.18]). 

However, some natural questions remained open, among them the following 

two, which are stated as problems at the end of [5, p. 454]. 

• Is it consistent that the class of W-groups of cardinality R1 is exactly the 

class of strongly Rl-free groups of cardinality RI? 

• If every strongly Rl-free group of cardinality R1 is a W-group, are they also 

all Rl-coseparable? 

In this paper we use the techniques of uniformization to answer the first question 

in the negative and give a partial aitlrmative answer to the second question. (The 

third author claims a full affirmative solution to the second question, but  it is 

too complicated to give here.) 

More precisely, we have the following two theorems of ZFC. 

THEOREM 1: The following are equivalent: 

(a) There is ~ ~1 -separable Whitehead g o u p  A of cardifla~ity }~1 with r(A) = 1. 

(b) There is a strongly R~-free Whitehead group A of cardinallty R~ with F(A) = 

1. 

(c) There is a Whitehead group A of cardinality R1 with F(A) = 1. 

(d) There is a Whitehead group of caxdinality R1 which is not strongly Rl-free. 

(e) There is a ladder system on lim(wl) which satisfies 2-uniformization. 

The new part of this result is the proof of (d) from (c); this gives a negative 

answer to the first question. Given the history of independence results regarding 

Whitehead groups, it is remarkable that the answer to this question is negative. 

The partial answer to the second question is contained in the following. 

THEOREM 2: Consider the following hypotheses. 

(1) Every strongly Rl-free group of cardinality R1 is Rl-coseparable. 
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(2) Every strongly Rl-free group of cardinality P,1 is a Whitehead group. 

(3) Every ladder system on a stationary subset Of~l satis~es 2-uniformization. 

(4) Every ladder system on a stationary subset of ~l satist~es w-uniformization. 

(5) There is a strongly l~l-free group of cardinality R1 which is Rl-coseparable 

but not free. 

Then (1) =~ (2) =~ (3) ¢~ (4) =~ (5). 

The new parts of this theorem are the proofs of (3) from (2) and (5) from (2). 

We consider the implication from (2) to (4) strong evidence for an affrrmative 

answer to the second question; what is lacking for a complete answer is a proof 

of (1) from (4). 

The last two sections of this paper contain some other results about uniformiza- 

tion, which may be of independent interest. 

P r e l i m i n a r i e s  

Let us review some basic notation and terminology. See [5] for further informa- 

tion; throughout the paper we will usually cite [5] for results we need, rather 

than the original source. 

We will always be dealing with abelian groups or Z-modules; we shall simply 

say "group". A group A is said to be a W h i t e h e a d  g r o u p  if Ext(A, Z) = 0; it 

is said to be R l - eosepa rab le  if Ext(A, Z (~)) = 0. 

A group A of arbitrary cardinality is Rl-free if and only if every countable 

subgroup of A is free; A is s t r o n g l y  Rl-free if and only if every countable subset 

is contained in a free subgroup B such that A / B  is Rl-free. A is R l - sepa rab le  

if and only if every countable subset is contained in a free subgroup B such that 

B is a direct summand of A. 

Chase [1] showed that CH implies that every Whitehead group is strongly 

Rl-free. In the third author's original paper, [6], on the independence of the 

Whitehead Problem, a larger class of groups than the strongly Rl-free groups 

plays a key role, namely the groups which the first author ([4]) later named the 

She lah  g roups .  These are the Rl-free groups A such that for every countable 

subgroup B there is a countable subgroup B e _D B such that for any countable 

C satisfying C N B e = B, C/B  is free. In [6] it is proved consistent - -  in 

fact a consequence of Martin's Axiom plus -~CH - -  that every Shelah group of 

cardinality R1 is Rl-coseparable. Later, in [8] it was proved consistent - -  in fact, 
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again a consequence of Martin's Axiom plus -,CH - -  that the Whitehead groups 

of cardinality R1 are the same as the Rl-coseparable groups and are precisely 

the Shelah groups. The first author emphasized the strongly Rl-free groups in 

his expository accounts of this work (e.g. in [3, 4]), as a class of groups more 

familiar to algebraists, and raised the first question cited above. The answer to 

that  question now given here shows, definitively, that the larger class of Shelah 

groups is the 'right one' to consider for the Whitehead Problem. 

Notions of uniformization (in our sense) were first defined in [2]. Let S be a 

subset of lira(w1). If 6 E S, a l adde r  on  6 is a function r/6: a~ ~ 6 which is 

strictly increasing and has range cofmal in 6. A ladder system on S is an 

indexed family 7} = {T/6:6 E S} such that each T/6 is a ladder on 6. For a cardinal 

A > 2, a A-coloring of a ladder system T/on S is a family c = {c6:6 E S} such 

that cs: to ~ A. A uniformization of a coloring c of a ladder system I/on S is 

a pair (f,f*) where f: Wl --~ A, f*: S ~ co and for all 6 E S and all n _> f*(6), 

f(rls(n)) = c~(n). If such a pair exists, we say that c can be uniformized. In 

order for the pair to exist it is enough to have either member of the pair; i.e., 

either f so that for all 6 E S , / ( t l s ( n ) )  = cs(n), for all but finitely many n, or 

f* so that  for all g, a E S, if n > / * ( 6 ) ,  m > / * ( a )  and rls(n) = 71,~(m), then 

cs(n) = c~,(m). We say that  (T/, A)-uni formizat ion  holds  or that  7/satisfies A- 

u n i f o r m i z a t i o n  if every A-coloring of 7} can be uniformized. We will generalize 

these (by now, standard) notions in the next section. 

If A is an Rl-free group of eardinality R1, then (we define) F(A) = I if and 

only if A is the union of a continuous chain of countable subgroups 

A =  ~.J A,, 
a<~a 

such that for all a E lira(w1), A~,+I/A, is not free. If A is not strongly Rl-free, 

then P(A) = 1, but the converse is false. 

LEMMA 3: h e there is a Whitehead group A of cardinality R1 with F(A) = 1, 

then there is a ladder system on lim(o~l) which satisties 2-uniforrnization. 

Proof." We assume familiarity with [5, §XII.3] and sketch the modifications to the 

proof of Theorem XII.3.1 that  are needed. In the proofs of Lemma XII.3.16 and 

Theorem XII.3.1, lim(0~1) is partitioned into countably many sets E , ;  to each of 

these is associated ~"  = {~a : a E E,,}, which is a family with 2-uniformization. 

As defined there, the range of the 7~c, is not a set of ordinals, but it is easy to see 
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that,  by a coding argument, we can assume that the range of ~a is contained in 

a and, furthermore, that if a E E i  and fl E Ej ,  then the ranges of ~a and ~ 

are disjoint. Finally, if necessary, one modifies each ~ so that  it is a ladder on 

oe (say by using a bijection from wl x wl to Wl). This produces a ladder system 

on lim(tol) which has 2-uniformization since the uniformizations of the original 

• " fit together to give a uniformization of the ladder system. I 

This proof obviously generalizes to prove that if there is a Whitehead group 

A of cardinality R1 with F(A) = S, then there is a ladder system on S which 

satisfies 2-uniformization. 

If a < 8 are ordinals, denote by (a,  8) the open interval of ordinals between 

a and 8, i.e., the set {7: a < 7 < 8}. Similarly we define the half open interval 

[a, 8), etc. We will use (a, 8) to denote the ordered pair of ordinals. 

1. The First Question 

It is consistent that every strongly Rl-free group of cardinality R1 is Whitehead 

(cf. [5, XII.l.12]) and it is consistent that there are non-free Whitehead groups 

of cardinality R1 and every Whitehead group of cardinality R1 is strongly Rl-free 

(cf. [5, XII.1.9]), but  here we show that it's not consistent that the Whitehead 

groups of cardinality R1 are precisely the strongly Rl-free groups. 

If tr E [to,to1) and a = 6 + n, where 6 is a limit ordinal and n E to, a l a d d e r  

on  a is defined to be a ladder on 6. Thus, for example, a ladder on to + 1 is a 

strictly increasing to-sequence approaching to. If S C_ [to,to1), a l a d d e r  system 
on  S is an indexed family 7/= (q~: a E S) such that each r/a is a ladder on a. 

Whenever we write an ordinal as 6 + n we mean that  6 E lim(tol) and n E to. 

We will always assume in what follows that if 6 + n E S, then 6 E S. 

Suppose that H is an indexed family (h,,: tr E S) where each h~ is a function: 

to - ,  to. If ~/ = (r/a: a E S) is a ladder system on S, an H - c o l o r i n g  o f  T/ is 

an indexed family c = (ca: ~ E S) such that for all a,  c~: to --, to and that  

for all n E to, c~(n) < h,~(n). We say that (q, H ) - u n i f o r m i z a t i o n  ho lds  (or 

T/satisfies H - u n i f o r m i z a t i o n )  if whenever c is an H-coloring, there is a pair 

( f , f * )  such that  f :  to1 --+ co, f*:  S -+ to, and for all ot E S , / ( r / a ( n ) )  = ca(n) 

whenever n _> i f ( a ) .  We say that (r/, $)-uniformization holds if each h~ 6 H is 

the constant function $; this agrees with the previous definition. 

A ladder system ~/= (~/a: a 6 S) is said to be t ree - l ike  if for all a ,  8 E S, 

if T/a(n) = T/a(m), then n = m and r/a(k) = T/a(k) for all k < n. Let F be a 
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funct ion f rom S to w; say tha t  ~/is s t r o n g l y  t r e e - l i k e  w . r . t .  F if ~/is tree-like 

and  in addit ion,  whenever  r/a(n) = r/o(m) for some c~, 3 E S and  n, m E w, then  

F ( a )  = F(f l ) .  

LEMMA 4: Suppose tha t  there  is a ladder system ~ = (~:  ~ E S) on S D_ l im(wl)  

such that (~, H)-uniformization holds. Given a {unction F: S ~ w, there is a 

ladder system ~ = (~]a: Ot E S) such tha t  7/ is strongly tree-like w.r.t. F and 

(r h H)-uniformization holds. 

Proof: Choose a one-one onto funct ion 19 f rom w × < ' w l  to Wl with  the p rope r ty  

tha t  for all l imit  5, 0[w × <wh] = 5 and for all k E to, if t is a sequence which extends  

s then  O(k,s) < O(k,t). For each a ,  let r/a(n) = O((F(a), (Ca(m): m < n))) .  Since 

8(k, s) < 8(k, t), Oa is s tr ict ly increasing. If we can show tha t  each ca is a ladder  

on a ,  then  we will be  done since, by construct ion,  it is s t rongly tree-like w.r.t .  

F .  Observe  tha t  because 8: w × <w5 ~ 6 is one-one and  onto for limit 5, if # 

is a l imit  ordinal  < ~a(n),  then  8((F(a),  (~a(m):  m < n)))  _> p. Consider  now 

a = 5 + n. Note tha t  r/a has range  contained in 5. If  5 is a limit of limit ordinals  

then,  by  the  observat ion,  the  range  of r/a is cofinal in 5 since the  range  of ~a is 

cofinal. I f  5 = 7 + w then  there  is some k so tha t  ~a(k) > 7. T h e n  for all m > k, 

7 < r /a(m) < 5 = 7 + to. So ~?a is cofinal in 5. | 

LEMMA 5: Suppose that there is a ladder system ~ = (~a: a • S) where  S 

lim(toi)) such that (¢,2)-unfformization holds. Given H = (ha: ot E [w,wl)) 

where each ha: w ---* w and given a function F: [w,wx) ---r w, there is a ladder 

sys tem 77 = (~a: a G [w, wl)) such that (ThH)-uniformization holds and r I is 

strongly tree-like w.r.t. F.  

Proof: We shall give the  p roof  as a series of reductions.  First  of all, by  [5, 

XII.3.2], (if, 3)-uniformizat ion holds. Next,  we claim tha t  we can assume  tha t  

is a ladder  sys tem on [w, wl). Write  w as the union of R0 disjoint infinite sets 

Yn (n • w), and  for each n let 8,: w ~ Yn enumera t e  Y,~ in increasing order.  For 

each 5 • lim(w~) and  n E w, define ~+ , ,  = ~ o 8, .  Then  it is easy to see tha t  

( ~ :  a G [w, wl)) satisfies 3-uniformization.  

So we will now assume tha t  S = [w,wl). By L e m m a  [4], we can assume 

tha t  ¢ is tree-like. For each a • S define Ca: w ~ w by  Ca(n)  = E j < , h , ( j ) ;  so 

¢ ~ ( n ) - ¢ a ( n - 1 )  = ha(n) for all n e w (where ¢ ,~ ( -1 )  = 0). Define ¢" = ¢,~ o¢=.  

Now we claim tha t  ~' satisfies H-uni formiza t ion .  Suppose  tha t  c' = ( c ' :  a • S) 

is an H-co lor ing  of C. Define a 3-coloring c of ( as follows. Let c~(0) = 2, and  
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for each n • w, and a • S ,  let ca(Ca(n))  = 2. Define c~,(¢,~(n - 1) + k) = 0 for 

1 < k < c ' ( n ) ,  and c ~ ( ¢ a ( n  - 1) + k) = 1 for c ' ( n )  < k < h~(n) .  

As an example,  suppose ha(0)  = 5, h a ( l )  = 4, h~(2) = 5 and h,~(3) = 6. Then  

Ca(0) = 5, ¢,~(1) = 9 , ¢ a ( 2 )  = 14 a n d C a ( 3 )  = 20. I f c ' ( 0 )  = 4, c ' (1 )  = 1, 

c ' (2 )  = 3 and c ' (3 )  = 0, then the values of ca(n) for 0 < n < 20 are: 

2, 0, 0, 0, 0, 2, 0, 1,1, 2, 0, 0, 0, 1, 2, 1,1, 1,1, 1,2. 

(The blocks of O's between 2's code the values of c ' . )  

Given ( f , f*)  which uniformizes c, define ( f ' , f '*)  as follows. Let n >__ f ' * ( a )  

if and only if Ca(n - 1) >_ ]*(o~). We need to choose .f' so that f ' (v)  = c2(m ) 

if v = ¢ ' (m)  and m > f '* (a ) .  To see that there is such an f ' ,  suppose/~ and 

k are such that also v = ¢~(k) where k > f*(f l) .  Since (~i: i • IT, w1)) is tree- 

like we have that CaI(¢~(m) + 1) = ¢~I(¢,,(m) + 1) and ¢~(m) = ¢~(k). For 

definiteness assume that Ca(m - 1) < ¢~(k - 1). Then since Ca(m - 1) > i f (a )  

and ¢~(k - 1) > f*(/3), we have that ca(r) = c~(r) for all r such that ¢~(k - 1) < 

r < ¢~(k). By the coding we know that C a ( m - 1 )  is the greatest natural number, 

s, less than ¢=(m) so that c,~(s) = 2. Hence ¢,~(m - 1) = Cz(k - 1). Also by 

the coding we have that c:(m) is the number of O's in c,~ between ¢=(m - 1) 

and ¢,~(m), which is the same as the number of O's in cz between ¢~(k - 1) and 

¢~(k). 

Finally, we can apply Lemma 4 to get a strongly tree-like r/ which satisfies 

H-uniformization. | 

LEMMA 6: Suppose that there is a / a d d e r  system ( = ((s: 5 • lim(wl)) such 

that (¢,2)-uniformization holds, and suppose we are given a prime p,~ for each 

a • IT, w1). Let {z~: v • ¢01} and (yt,: v •/M1} be sets  o fsymboZs .  

Then there are primes qa,n for each cr • IT,w1) and n • w and a ladder system 

,7 = (,7~: ~ • [~,~1)> such that given any integers r~ and t~, .  for all ~ • [~,~,) 
and n • w, there is a function 

~b: (Zv,yt,: V • ~I} "+ Z 

such that for all a E [~,¢,dl) and ~ n • ~,d, 

¢(xa)  = ra (modp~)  and 

¢ ( z , , )  - ¢ ( y ~ ( , , ) )  = ta,,, ( m o d  qa,,,). 
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Also, t ! has the property that  i f  ~a(ra) = rl#(n), then ra = n, p,~ = p# and 

k _< n) = k _< n). 

Proof.." Define the qa,n so that there is no repetition in the sequence (pa) "-" 

(qa,~: n E w) and such that if pa = P~, then q~,n = q~,n for all n. Without loss 

of generality we can suppose that ra E {0,. . .  ,Pa - 1) and t(,,, E { 0 , . . . ,  q~,, - 

1}. Fix a bijection 0: <~w -4 w such that if u: ra ~ w and v: ra --* w are 

such that u(i)  < v(i) for all i < m, then 0(u) < 0(v). For each a and n, let 

ha(n)  = O((pa) "-" (qa,j: j < n)). Let F be the function on [w,wl) such that  

F ( a )  = pa. Apply Lemma 5 to this situation to obtain the ladder system r/as 

in that  lemma. Then there is a uniformization (f, f*) for the coloring given by 

c (n) = 0(<,a) (ta,i: j < n)). 
We can assume that  f*((~) is minimal for f ,  i.e., f*(a)  is the least k so that 

f ( n )  = ca(n),  for all n > k. An immediate consequence of the minimality is that  

if there exists n > f * ( a ) , f * ( f l )  with rla(n ) = r/#(n) then f * ( a )  = f*(f l) .  (The 

point is that c~,(n) = c#(n) implies that ca In = c# In.) 

We now define ¢ in w stages. At stage k, we will define ¢(z~) for all a such 

that f*(a)  = k and we will define ¢(y~) for all v of the form r/-~(k) or of the form 

o~(n) where f * ( a )  = k and n > k. First of all, for each v of the form r/7(k) for 

some 7, let ¢(Yv) be arbitrary, if it has not already been defined at a previous 

stage. [Note that if v is of this form then k, but not a,  is uniquely determined 

by the tree-like property of 7.] For each a such that f * ( a )  = k, define ¢(x~) to 

be the minimal natural number such that 

¢(xa)  = r .  (rood p.) ,  

¢(xa)  = ta,j + ¢(Y~o(D) (rood qa,j) for j < k. 

This is possible by the Chinese Remainder Theorem. Now for each v such that  

v = ~a(n) with n > f*(a)  = k, choose ¢(y~) minimal in w such that ¢(xa)  - 

¢(v~) = ta,n (rood qo,n); this is well-defined (independent of a) by the tree-like 

properties of r /and the primes, the uniformization, and the minimal choices of 

¢(xa)  and ¢(Yv). Notice as well that by the minimality of f* and the remark 

above, any v is considered at at most one stage. To finish we let ¢(y~) be 

arbitrary if v is not of the form ~a(n) for any (~ or n. | 

THEOREM 7: /-f there is a W-group  A of  cardinality R1 with F(A) = 1, then 

there is a W-group  G of  cardinMity R1 which is not  strongly Rl-flee. 
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Proo£" By Lemma 3, there is a ladder system ( on lira(w1) which satisfies 2- 

uniforraization. So we are in a position to appeal to Lemma 6. In fact by 

successive uses of this lemma, we can define, by induction on m E w, sequences 
m . _ of primes (p~: w ~_ o~ < wl) and (%,,~. w < a < wl ,n  E w/, and ladder systems 

~m = ( ~ :  ~ E [~,~1)/  which for each m ~ ~ satisfy the properties given in 

Lemma 6 and moreover are such that for all m, a and n, ..m+l m v , ~ ( . )  = q= , . .  

Let F be the free group on {x~": ~ < wl ,m E w} 0 {Za,m,.: w _< ~ < Wl,m,n E 
w} and let K be the subgroup of F generated by {w~,,n,.: w _< ~ < wl, m , n  E w} 

where 
m m - -  . T m + l  Wa,m,n = --q~,nZa,m,n + Zvt n~(n)" 

Let G be F/K.  In a harmless abuse of notation we shall identify elements of F 

with their images in F / K  = G. To see that G is not strongly Rl-free, consider 

the set Y = {x~: m < w ,a  < w} _C G and show by induction on a < w~ that if 

H is an Rl-pure subgroup of G containing Y, then z ~  E H for all m E w. (The 

key point is that x~  will be divisible by infinitely many primes modulo H since 
x m + l  n~(n) E H by induction.) 

To see that G is a W-group, consider f E Horn(K, Z). We want to define an 

extension of f to g E Hom(F, Z). The definition of g will take place in w stages. 

At the start of stage k, for all a and n we have defined g(z,~,,n,,) for m < k - 2 

t and committed g(x~) to be r~ and g(x'~) for m < k - 1, and we have defined r~ 

m o d ~ o  ~ (= qa,~-~ where ~-~(~) = ~). 
Apply the uniformization property of Lemma 6 with r~, = r~ and t~,~ = 

f (w~, t , , ) .  We obtain a function ¢~: {x~, x~+l: v E Wl} -"+ Z such that  ¢~(x~) -= 

~' (rood p~) and r a 

¢~(~) ~+~ q~,.). - ¢~(=,,:~,o) =- f (~ '~ , t ," )  (rood t 

Define g(x~) = Ct(x~) and let ,~,-~+~ b e  Ck(xk+l). Then by induction 

- g ( % = , - , c . ) )  - -  C k - ~ (  . ) - C k ( = , ~ - ~ c .  ~) 

- ¢ ~ _ 1 ( ~ - ~ )  ~ _ ,  ~ - 1  - r ~ _ , ( . )  = ~ k - ~  ~ ) - ' & - 1 ( % ~ ( . ) )  

=- f(w.,k-1,,=) (mod qc,,,=t-z). 

So define g(Z=,k--l,n) to be the unique integer such that 

y ( ~ - ~ /  ~ ~-1 
- g ( % - , ~ . ) )  - f ( = . , ~ - l , . )  = q . , .  g ( z . , k - ~ , . )  
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This completes the definition at stage k, and thus completes the proof. | 

As mentioned before, Chase proved that CH implies that every Whitehead 

group is strongly Rl-free. We can thus derive as a consequence of Theorem 7 that 

CH implies that  every Whitehead group A of cardinality R1 satisfies F(A) ¢ 1; 

this is a complicated way to prove a fact already known, which is derived more 

easily using the weak diamond principle (cf. [5, XII.1.8]). 

The following consequence of the theorem was also already known (see [4, 8.2, 

p. 74]), but the proof here is more elegant, if less direct. 

COROLLARY 8: There exists a Shelah group of cardinality R1 which is not strong- 

ly Rl-free. 

m . _ Proof." Choose sequences of primes (p~": w _< a < wl / and  (qa,,,. w < a < wl,n E 

w}, and ladder systems y "  = (y~: a E [w,wl)} satisfying all the conditions in 

Theorem 7 except for the uniformization properties. This can clearly be done in 

ZFC. Construct G as in Theorem 7. Then, as before, G is not strongly Rl-free. 

We need to show that  G is a Shelah group. Note that the property of no t  being 

a Shelah group of cardinality R1 is absolute for extensions which preserve R1. 

There is a generic extension of the universe which satisfies MA + --CH. In this 

model, every ladder system satisfies R0-uniformization (cf. [5, VI.4.6]), so our 

ladder systems have the property given in Lemma 6. Then the proof of Theorem 

7 applies to show that G is a W-group. But in a model of MA + -,CH, every 

W-group is a Shelah group (cf. [5, XII.3.20]). So G was a Shelah group to begin 

with. | 

Combining Theorem 7 with results from [5, Chapter XII] we have a proof of 

Theorem 1 stated in the Introduction. 

In a similar way one can also prove 

THEOREM 9: The following are equivalent: 

(a) There is an Rl-separable Rl-coseparable group A o£ cardinality R1 with 

r (A)  = 1. 

(b) There is an strongly Rl-free Rl-coseparable group A of cardinality R1 with 

F(A) = 1. 

(c) There is an Pu-coseparable group A of cardinality R~ with r(A) = 1. 

(d) There is an Rl-coseparable group of cardinality R1 which is not  strongly 

Rl-free. 
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(e) There is a ladder system on a stationary subset of lim(wl) which satist~es 

w-uniformization. 

2. T h e  Seco nd  Q u e s t i o n  

It is consistent that there are non-free Whitehead groups of cardinality R1 but 

every Rl-coseparable group of cardinality R1 is free (see [5, XII.3.18]). Here we 

shall show that if every strongly Rl-free group of cardinality Rx is Whitehead, 

then every ladder system on a stationary subset of lim(wx) has w-uniformization, 

and hence it follows that  there are non-free Rl-coseparable groups of cardinality 

R1. 

PROPOSITION 10: Assume that every strongly Rl-free group of cardinality R, is 

Whitehead. Then for any ladder system r / =  (06: ~ 6 S) on a stationary subset 

S of lira(w1), and anyw-coloring c = (ca: ~ 6 S) ofrl, there is a pair (g,g*) such 

that g*: S ~ w and g: wx ~ w such that for MI 5 6 S and all n E w, i f  n >_ g*(~), 

t h e n  > 

Proof." Given what we are trying to prove, we can assume that each c$ is a 

strictly increasing function: w --* w. For each 6, n choose a prime p~,. > 4c6(n). 

Define G to be the free group on {Y6,,: $ 6 S, n G w} U {xv: u G tOl} modulo the 

relations 

(1) P6,nY6,n+l = Y6,0 q- Xq6(n). 

It is routine to check that G is strongly R1-free. Let H be the free group on 

{y~,.: 6 G S, n G w} U {z ' :  u G wl} U {z} modulo the relations 

( 2 )  
I I I P6,-Y6,,+l = Y~,0 + %,( , )  + c6(n)z. 

Then there is a homomorphism lr of H onto G taking Y6,n~ to y6,n and z v~ to 

zv and which has kernel Zz. By hypothesis, since G is Whitehead, there is a 

splitting ~: G --* H,  i.e., such that rosa = 1a. In particular, for all a E Wl, there 

is d(a) G 7. such that ~o(za) - x~ = d(a)z. 

Define g(a) = 21d(a)[. Applying ~ to equation (1) and subtracting (2), we see 

that P6,, divides 

( 3 )  - + - x '  - c , ( . ) z  ~,(-) 
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in Zz. Let b be such that bz = ~(~/s,o) - ~/~,0" Define g*(6) so that  c6(g*(6)) > 2b. 

Assume that n > g*(6). Then p6,n > 4cs(n) > 8b. Now consider two cases. The 
I first is that (3) is zero, in which case d(o~(n))z = ~(x~s(n))-z~s(n ) = c~(n)z -bz .  

Since c ~ ( n ) -  b > c6(n) - e6(n)/2 = c6(n)/2, c~(n) < 2d(r/~(n)), and thus c~(n) < 

g(r/s(n)). In the second case, (3) equals m z  where m is at least p6,n in absolute 

value, so Id(r/s(n))l + Ib - cs(n)l > ps, . .  But Ib - cs(n)l < Ibl + Ic~(n)l < p~, . /2 ,  

so Id(r/s(n)) I >_ ps,n/2 > c6(n). Hence c6(n) < g(r/6(n)). I 

COROLLARY 11: Assume that every strongly Rl-free group of  cardinality RI is 

Whitehead. Given a ladder system r~ = (r/s: 6 E S) on a stationary subset S of  

lira@l), there is a function g: tol ~ OJ SUCh that for all ~ E S, 9(r/s(n)) > n for 

all but finitely many n E to. 

Proof: Define an to-colorir~ c = ( c6 :6  ~ S)  by c , ( n )  = n - Z. There  is a p a r  

(g, g*) as in Proposition 10 with respect to c. Clearly g is the desired function. 

l 

LEMMA 12: Given any positive integer k and prime p > 8k, there are integers 

ao and al and a function F: Z / p Z  --* 2 suCh that for a / / m  E Z, if  Iml < k, then 

F ( ( m  + , , )  + pZ) = e for e = 0 ,1 .  

Proof: Let a0 = 0, al = 3k. Then {m + a0: Iml < k} = I -k ,  k] and {m + 

~a: Iml _< k} = [2k, 4k]. Since p > 8k, {i + p Z :  - k  < i < k} is disjoint from 

{j + pZ: 2k < j < 4k}, so we can define F as desired. | 

As mentioned in the Introduction, it was shown in [9] that if there is one 

strongly Rz-free group of cardinality R1 which is not free but Whitehead, then 

there is some ladder system on a stationary subset of tol which satisfies 2- 

uniformization. Here we show: 

THEOREM 13: Assume that every strongly Rl-free group of cardinality R1 is 

Whitehead. Then every/adder system on a stationary subset oflim(toz) satisfies 

2-uniformization. 

Proof." Given a ladder system 7/= (r/s: g E S), let g be as in Corollary 11. By 

omitting a finite initial segment of each ladder, we can assume, without loss of 

generality, that 9(r/6(n)) > n for all n E w. 

For each a E o~1, choose a prime pa > 89(a). Also, for each a E R1, choose a 

function 

F,,: Z/p,~Z ~ 2 
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and integers a~', a~' such that for all m E Z, if Iml < g(~), then F~,(m + a~) = e, 

for g = 0, 1. (Here, and hereafter, we write F,~(k) instead of F,~(k +p~Z) . )  This 

is possible by Lemma 12. 

Now given a 2-coloring c = (ca: 6 E S) of 7/define, as in Proposition 10, G to 

be the free group on {Ys,.: 6 E S, n E w} U {x~: v E w~} modulo the relations 

(4) P~s(n)Y6,n+l = YS,0 q- x~s(n). 

' • u and let H be the free group on {Ys, n. 6 E S, n E U {x~: v E {z} modulo 

the relations 

( 5 )  ' ' ' P,16(n)Y6,n+l = Y6,O + x~s(n) + a6,nZ 

a ~`(") Let ~r: H ~ G be the homomorphism taking ' where a6,a = cs(n)" Y~,n to Y~,n 
' to x~; then there is a splitting ~: G ~ H of r .  We shall identify the and z~ 

i is an integer. elements of Zz with integers; thus, for example, ~(x~) - xa 

Define the uniformizing function f :  R1 ~ 2 by 

= - x ' ) .  

We claim that  f(rl6(n)) = c6(n) when n > ]~(Y~,0) - Y~,01. As in Proposition 

10, by applying ~ to (4) and subtracting (5), we get that  ~(x~s(n)) - z'  is ~,(-) 
congruent to Y~,0 - V(Y,,o) + a , , .  (mod p.s(n)). Hence 

f(rl ,(n)) = F,  dn)(y~, o - ~o(ys.o) + a , . . )  

which equals c , ( . )  when [Y'6,o - ~(Y,,o)I < g(rls(n)) by choice of F , d .  ). But in 

fact this is the case when n _> I~(Ys,0) - Y~,0] because g(rl~(n)) >_ n. I 

LEMMA 14: Given a stationary subset S of lim(wl), for each a 6 wl let a(a) 

denote the least element of S which is greater than a. Then for each a 6 wl 

there is a ladder (~ on a(a) such that (~(0) > a and such that for all a ~ ~, 

r g e ( ¢ . )  n r g e ( O )  = 0. 

Proof: For each 7 6 S, let 7 + denote the next largest element of S. Then 

a(a)  = 7 + if and only if a 6 [7, 7+) • It is dear  that  7 + contains the disjoint 

union of w sets of order type w, each of which is cofinal in 7+: 

7+_~ Uw.. 
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Let 0. r be a bijection of [7, 7 +) onto w. Then if c~ 6 [7, 7+), let ~ enumerate 

Wo,(~) \ (o~ + 1) in increasing order. | 

The following result has been proved in [9, 1 .4 ,  p .  262], but we give a self- 

contained proof here. 

THEOREM 15: Let S be a stationary subset of lim(wl). / / e v e r y / a d d e r  sys- 

tem on S satisifes 2-uniformization, then every ladder system on S satisfies w- 

unfformization. 

Proof." Consider a ladder system 7/= (7/s: 6 6 S) and an w-coloring c = (c6:6 6 

S). We are going to define another ladder system ,/' = ('7~: ~ 6 S) and a 2- 

coloring c'. Roughly, and slightly inaccurately, we get 7/' from ~/ by adding a 

segment of length cs(n) at each T/6(n) and then we color the new segment by a 

binary code for c6(n). 

Let the ladders (~ be as in Lemma 14. Let ,/~ enumerate the w-sequence 

u,,~,(q,(,,)(k)- k < ~(,~)}. 

Define ~ ( k )  = 0 if  ,7~(k) = (~ , ( ,O(c , (n) )  for some n, ~ d  c~(k) = 1 otherwise. 

By hypothesis, there is a uniformization ( f , f * )  of the coloring c' of 7/'. De- 

fine g: wl ~ wl as follows: 9(a)  equals the number of l 's  before the first 0 in 

f[rge((~).  Define g*: S ~ w by: g*(6) = m if m is minimal such that for every 

n < f*(6), there exists k < m with ,/~(n) q ~,,(~). 

We claim that (9, 9*) uniformizes the coloring c of 7/. Suppose m > g*(6). Let 

(ni: i < cs(m)) enumerate in increasing order the set 

{j: ~ ( j )  ~ rge(G,(m ) r(c,(m) + 1))}. 

Then c~(ni) = f(rl~(nl)) for i _< cs(m). So there are exactly c,(m) l ' s  before the 

first 0 in flrge(~,u(m) ). | 

We can now give the proof of Theorem 2 stated in the Introduction: (1) implies 

(2) is trivial; (2) implies (3) is Theorem 13; (3) implies (4) is Theorem 15; and 

(4) implies (5) is a consequence of [5, XII.3.1]. | 

The third author claims to have a proof of (4) implies (1) and hence an affir- 

mative answer to the second question (in the Introduction); but he has not yet 

been able to convince the first two authors. 
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3. U n i f o r m i z a t i o n  on  a cub 

The theorems of this section have no direct application to Whitehead groups, 

but they complete a circle of results regarding uniformizations. 

THEOREM 16: Suppose that S is a stationary subset oflim(wl) which has the 

property that t'or every ladder system 71 = (ys: 6 E S) on S and every w-coloring 

c = (c6:6 E S), there is a pair ( f , f * )  and a cub C on Wl SUCh that /'or every 

q S N C, f(rl~(n)) = c~(n) for all n >_ f*(6). Then every/adder system on S 

satisties w-uniformization. 

Proof: Let 7/be as given and let c be any w-coloring of T/. Let C and (f,  f*) be 

as in the statement of the theorem. For each a E C, let 0~ be a bijection from w 

onto a. 

Let $1 = C* N S, where C* is the set of limit points of C. For each 6 E $1, let 

T/~ enumerate in increasing order the set U,ewZn, where Z ,  is defined as follows. 

Let 7- = min(C \ (7/6(n) ÷ 1)), i.e., 7- is the least element of C which is greater 

than 7/s(n); then ~/6(n) = 0~.(k,) for some unique k,  E w. Define 

Z,, = {a: a = O•,,(j) for some j _< k ,  and min(C \ (a + 1)) = 7,,} 

Note that T/6(n) E Z, ,  so the range of T}~ includes the range of ~s. We are going 

to define a coloring c ~ = (c1:6 E $1). It will be convenient to regard c~ as a 

function whose domain is rge(~/~) rather than w; that is, if a = z/~(k), we shall 

write c~(a) instead of c~(k). 
c~(71~(n)) is defined to be 

where r6,j is the size 

For all 8 E S] and n E w, if 71~(n) = 7/s(m), then 

((T/~(j), rs,/): j _< m) 

of the intersection of the open interval 

(r/6(j),min(C \ (r/s(j) + 1))) with rgeO/6); c~O?~(n)) can be regarded as an el- 

ement of w \ {0} by a coding argument. Otherwise c~(tl](n)) is defined to be 

O. 

By hypothesis there is a pair ( f l , f ~ )  and a cub C1 such that for 6 E $1 f3 C1 

and n > f~(6), fl(Tl~(n)) = c~(T}~(n)). Without loss of generality, we can assume 

that  C~ C C*. 

Define 91 = C1 N S, 92 = (C N S) \ C1, 93 = S \ (91 U D2). We are going 

to define the desired uniformization, (f0, f~), of c by defining f~ = g~ U g~ U g~, 

where gT: Di ~ w. 
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Define g[($) to be the maximum of f ' (~ )  and the least m such that ~/s(m) > 

t/~(k), where k _> f~*($) and there is a • C so that ~/~(k - 1) _< a < t/sl(k). Thus 

if n >_ g[(6), f(~l~(n)) = cs(n) and f~(~/s(n)) = c~(tls(n)). Let 

A = {~/s(n): 6 • D1, rt > g~(6)). 

Let a < fl be two successive members of C (so, in particular, (o~,,~]n(7~ = ¢, since 

C~ C C*). Notice that, by the last clause in the definition of g~, if for some ~ and 

n, ~/s(n) • A t3 (a,g],  then c~(3') = f~(7) for all 3' • (a,~] n rge(~/~). We claim 

that there exists 6 • S~ such that $ > /~  and A r3 (a, ~) is contained in rge(t/s); 

this implies that A n (a,]~) is finite. It suffices to show that for any ~ ,  62 in 

D~ \ ( / /+1) ,  ifrge(t/s,)nAn(rr,/9) # ~ for ~ = 1,2, then rge(~?~,)f3/~ = rge(~/~,)n~. 

Now, for each £, n such that ~ls,(n) • (a, ~), note that min(C \ (~/~ (n) + 1)) = ~, 

so there is a kL,, such that 8~(kt, ,)  = rts,(n) and a set 

Z~ = {a: a = 8#(j) fo r  some j < kt,, and min(C \ (a + 1)) = ~} ~_ rge(~/],). 

The sets Z~ are linearly ordered by inclusion, so for each £, there is a largest one, 

which we shall denote Z t. Without loss of generality, Z 1 _C Z 2. 

Also by the choice of gl, we know for each £ that f l (a )  = cls,(a) for a • 

Z t. So for any a • rge(T/s,) n (a, fl), 0 # c~,(a) = f l ( a )  = c~2(a ). Hence 

rge(r/6,)N~ c T/6, n~. Finally if we choose m maximal so that T/s~(m) • (or, fl) then 

I(T/~, (m), rain((7 \ (T/~, (m) + 1)) N rge(~/~ )[ = 0. Then c~, (t/s, (m)) = fl  (T/~, (m)) = 

c~,(TIs,(m)) , so by definition of c 1, T/6,(j) = T/8,(j) for all j _< m and t/s,(m) is 

the largest element of rge(T/~,) n ft. 

Define hi: D~ ~ w such that if a 

if we define 
= 6 • 

then B~,~ C_ (a,/~) and for any ~ 6 

do. Now define g~(~) = max{h~(~), 

So we are done. 

< ~ are successive members of CI U {0}, and 

n h (6) < n < 

D3, sup(B~.~ t3 g) < 6. This is not hard to 

f{(6)}  for all 6 6 02.  Let 

B = (~6(n): 5 6 D2, g~(6) < n < w}. 

Thus for any 6 6 D3, B N 6 and A n 6 are bounded in 6 (the latter because there 

are successive elements ~ </~ in (7 such that ~ < ~ < ~ - -  since 6 ~ (7). Define 

g;: D3 ---} w such that for all 6 6 D3, {r/6(n): g~(6) _< n < w} n (A u B) = @. 
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Then let f~ = g7 U g~ U g~. We can then let f0 IA U B = fl  rA U B and easily 

define f0 on wl \ (A U B) to take care of those 6 in D3. II 

We shall abbreviate the property given in the hypothesis of Theorem 16 by 

saying "every ladder system on S satisfies w-uniformization on a cub". Combining 

the results of this section with those of the previous section we have the following. 

THEOREM 17: Let S be a stationary subset oflim(wl). Consider the following 

hypotheses. 

(1) Every strongly Rl-free group A of cardinality R 1 with F(A) c_ S is R1- 

coseparable. 

(2) Every strongly Rl-free group of cardinality R, with F(A) C S is Whitehead. 

(3) Every ladder system on S satisfles 2-uniformization. 

(4) Every ladder system on S satistles w-uniformization. 

(5) Every ladder system on S satisties 2-uniformization on a cub. 

(6) Every ladder system on S satis~es w-uniformization on a cub. 

Then (1) (2) (3) (4) (5) @. 

Proof: (1) implies (2), (4) implies (3), (6) implies (5) and (4) implies (6) are 

trivial. Inspection of the proof of Theorem 13 shows .that it "localizes" to S, so 

(2) implies (3). The implication from (3) to (4) is Theorem 15; the proof of (5) 

implies (6) is exactly the same. That (6) implies (4) is Theorem 16. | 

4. Topological Considerat ions  

Uniformization results have been associated with the construction of interesting 

normal spaces. From the existence of a ladder system with 2-uniformization it 

is easy to construct a normal space which is not metrizable. In fact this is how 

the consistency with GCH of the failure of the normal Moore space conjecture 

was established [7]. (See [10] for more information about the normal Moore 

space conjecture.) A key difference between the Whitehead problem and the 

construction of normal spaces from ladder systems is that in the topological case 

the proof of the normality of the space does not require the full power of 2- 

uniformization, but only requires uniformization of monochromatic colourings. 

However, by considering a large collection of spaces built from ladder systems, 

we can get topological equivalents to uniformization principles. We would like to 

thank Frank Tall for looking at this section, saving us from an elementary error in 

topology, and providing information about the normal Moore space conjecture. 
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Recall that  if a = 6 + n where 6 E lim(wl), then a ladder on a is defined to 

be a ladder on 5. Suppose that E_C[w, wl) and r/is a ladder system on E. Then 

we define a topological space X(r/) on wl by defining by induction on a < wl 

a neighborhood base of a.  Let a be isolated if a ~ E. If a E E,  then a 

neighbourhood base of a is formed by the sets {a} U l.Jn<,~ Um where u,~ is a 

neighbourhood of r/a(rn) and n < w. 

Suppose that SClim(wl).  Let Ko(S) be the set of topological spaces of the 

form X(r/) where r/is a ladder system on some EC{6 + n~ E S and n E w} which 

satisfies the additional hypothesis that if ~ + n, 6 + m E E and m # n then 

rge(r/6+,,) f3 rge(r/6+,,,) = 0. Let KI(S) be the subset of Ko(S) consisting of all 

X(r/) such that if r / =  {~/a: a E E},  then for all a E E,  the range of r/a consists 

of isolated points (i.e., elements of wl \ E).  

These classes of spaces can be used to give equivalents to uniformization prin- 

ciples. 

THEOREM 18: Let SC_ lim(wl). The following are equivalent. 

(a) every ladder system on S satisfies 2-uniformization; 

(b) every member of Ko( S) is normal; 

(c) every member of K1 (S) is normal; 

(d) every ladder system on S satisfies Ro-uniformization. 

The equivalence of (a) and (d) has already been established. The rest of the 

section is devoted to proving the non-trivial implications. 

From now on we will assume that every ladder system on a set EC[w, wl) is 

such that  if 6 + n, ~ + m E E and m ~ n then rge(r/6+n) fq rge(r/~+m) = 0. With 

this assumption, there is a simple connection between uniformization on subsets 

of lim(wa) and subsets of [w, wl). 

PROPOSITION 19: Suppose SC_ lim(wl) and every/adder  system on S satisfies 2- 

unfforrnization (Ro-unfformization). If EC_{5 + n: 5 E S and n E w}, then every 

ladder system on E satisfies 2-uniformization (Ro-unifonnization). 

Proof." Given {r/a: a E E},  for each ~ E S choose r/~ so that for all n, if 5 + n  E E 

then the range of r/~+~ is contained, except for a finite set, in the range of r/~. 

Let 77* = {r/i: 6 E S}. Given a coloring c = {ca: a E E} it is easy to produce a 

colouring c* of r/* such that any function which uniformizes e* also uniformizes 

c. II 
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If S is a stationary subset of lim(wl) and 7/is a ladder system on S such that 

the ladders consist of successor ordinals, then the space X(r/) is not metrizable. 

The connection with the normal Moore space problem came from the following 

easy fact. 

THEOREM 20: Suppose EC[w,wl)  and T 1 is a ladder system on E which satisfies 

2-uniformization where for all a 6 E the range of ~ consists of isolated points. 

Then the space X(71) is normal. 

Proof.." Suppose A0 and Ax are disjoint closed sets. Choose a coloring so that 

ca is constantly 0 if a E A0 and c~ is constantly 1 if a E A1. Suppose that 

f uniformizes the coloring. Then we can let U0 = A0 U {fl: f ( f l )  = 0 and f l ¢  

(E U A1)} and U1 = A~ U {/~: f(/~) -- 1 and f l ¢  (E U A0)}. I 

Unlike the case of abelian groups, where the group constructed from the ladder 

system is a Whitehead group if and only if the ladder system has 2-uniformization, 

we cannot deduce the converse here because in the topological case we only need 

to deal with monochromatic colorings. 

THEOREM 21: Suppose SClim(wl). It" every dement  of K~(S)  is normal then 

every ladder system on S satisfies 2-uniformization. 

Proof: Suppose we are given 7/ -- {~:  ~ E S) a ladder system on S and c = 

{c6:5 E S} a coloring of 7. Let {¢(a): a < w~} enumerate the ordinals equivalent  

to 2 (rood 3) in increasing order. For 5 E S and i = 0,1 if there exist infinitely 

many n so that c6(n) = i, let q;+i enumerate {¢(~8(n)): cs(n) -- i} in increasing 

order. Otherwise q~+i is undefined. Let 71" -- {r/l+i: T/~+i is defined}. It is easy 

to see that X(q*)  E KI(S)  and so by hypothesis is normal. For i = 0, 1, let 

Ai = {5 + i: 6 E S and r/~'+i is defined}. Let Ui be as guaranteed by normality 

and choose f so that f ( a )  = i if ¢(a) E U~. It is easy to check that f uniformizes 

c. I 

The previous two results show that (a) is equivalent to (c). It remains to prove 

that (a)implies (b). 

THEOREM 22: Suppose Sc_[w,wl) and every ladder system on S satis~es 2- 

unfforrnization. Then every element of Ko( S)  is normal. 

Proof." Fix 7/= {r/s: 5 E S}. It suffices to show that if C, D are disjoint closed 

sets, then there exists C' so that: (0) CCC'; (1) C'  n D = 0; (2) C' is closed; 
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and (3) for all a E C there is k so that r/~(r) E C'  for all r > k. Before proving 

that C' exists let us see why the claim suffices. 

Given disjoint closed sets A0 and A1, let A,,0 = A,, for n E {0,1}. Considering 

each n E {0, 1} alternately, we can inductively define A,,m, such that if n is 

the number considered at stage m, then A,,m+l is to A,m,  A(1-n)m as C t is to 

C, D. We also let AO_,,) ,+I = A(1-,0,,,. Then let A n = U,~<,~ An,,,. To finish 

the proof we must show that A n is open. We do this by induction on a E A n. 

Suppose a E A n and choose a stage m where rt is considered and a E A,,~. If 

is isolated then we are done; otherwise t/a is defined. So for some k and all 

r > k, Tin(r) E An,,+IC_A". By induction, A n contains an open neighborhood Ur 

of each ~ ( r ) .  Hence A" contains {a} U Uk>r ur, which is an open neighborhood 

of  ell. 

It remains to show that C'  exists. For a E S, define ca to be constantly 0 

if a E C and let c~ be constantly 1 if a ~ C. Choose f which uniformizes the 

coloring. Let C' = C U {a: f ( a )  = 0 and a ~ D}. Requirements (0) and (1) 

follow from the definition. For clause (2) we must show that the complement of 

C' is open. By induction we show that if/3 ~ C' then the complement of C'  

contains an open neighborhood of j3. If/3 is isolated, there is nothing to prove. 

Otherwise T/a exists and # ~ C. Since f uniformizes the coloring there is no so 

that for all m > no, f (~a(m))  = 1. Furthermore since C is dosed there is nl so 

that for all rn > nl ,  t/#(m) ~ C. So if we let n = max{n0, nl }, for all m > n, 

~/~(m) ~ C'. By the induction hypothesis there is an open neighborhood of each 

T/~(m) contained in the complement of C'. So the complement of C' is open. 

The verification of (3) is similar to the verification of (2) except we use that D 

is closed as well as that  f uniformizes the coloring. I 
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